Biological Membrane
Transport

Review of membrane structure and dynamics
Membrane transport

Energetics

Types

Membrane Transport

Dr. Kornberg: “The Berlin Wall
of the Cell”

Lecture 01.23.17 (21:04-23:56 & 35:27-38:29)-Berlin Wall
(3 & 3 min)

[BI422 videos: https://mymedia.bu.edu/channel/B1422/81224851]

+ Cell membranes are permeable to small nonpolar
molecules that passively diffuse through the membrane.

+ Passive diffusion of polar molecules involves desolvation
and thus has a high activation barrier, unless desolvation
energy is lowered.

* Transport across the membrane can be facilitated by
proteins that provide an alternative diffusion path.

* Such proteins are called transporters or permeases.



https://mymedia.bu.edu/channel/BI422/81224851
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Membrane Transport

Three Classes of Transport Systems
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Membrane Transport

What is this electrochemical gradient?

+ Transport across a membrane must be
energetically favorable. There are two types of
energies at play:

— Concentration dependence: The solute moves toward
chemical equilibrium across the membrane.

— Electrical dependence: The solute moves toward
charge equilibrium across the membrane.
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Membrane Transport

What is this electrochemical gradient?

+ Transport across a membrane must be
energetically favorable. There are two types of
energies at play:

— Concentration dependence: The solute moves toward
chemical equilibrium across the membrane.

— Electrical dependence: The solute moves toward
charge equilibrium across the membrane.
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Membrane Transport

Energetics Transport can be considered like a chemical reaction of
Sout to Sin
[Sout] Sout = Sin

Outside

AG'=AG?+RTIn o]
, [Sout ]
But, AG° = 0 because there is no chemical reaction:
Inside AG’= RTIn [Sin ]
[Si.] [Sout ]
If [Soul > [Sil, AG'is ©

If [Soul < [Si], AG'is D

. . . Where “z” is the charge
But, if S is charged, we must account for this: on' S, and At is the
[S ] membrane electrical
AG =RTIn—"

+ Z 97 Al/) potential in volts
[Sout]




Membrane Transport

Energetics Sout = Sin
[SSal <
DD D D@ AG =RTINSM 4 727 Ay
out

Where “z” is the charge
on S, and Ay is the
membrane electrical

e 6 © e Ay = charge difference “in” versus “out” Potentialin volts
[Sin So, if its more negative in than out, Ay is © (as depicted)
And, if its more positive in than out, Ay is €D

Now, if Ay is negative, and S has a positive charge (z is +, as
depicted), then z7 Ay makes a negative contribution to AG’
making it even more favorable.

As a further consequence, if Ay is maintained, then at equilibrium
[Sin] > [Sout]-

Membrane Transport

How do you experimentally  Non-mediated ~ Simple diffusion

determine the kind of
transport? Mediated Facilitated diffusion, ionophore

mediated, active transport

Diffusion is governed by Fick’s law of diffusion: o S -
Q = rate of diffusion. Q = DA . 2
/r D = diffusion coefficient
Rate of A = area across which diffusion occurs
0 [Sout] @nd [Sin] = concentrations on each side of membrane.

L = thickness of the membrane.
DA/L is the permeability coefficient.
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Thus, “diffusion” is Non-mediated

s | Mediated behaves like saturation kinetics
s C+S,=CS=C+8,
0 o Qmax [Soutl  Thus, “diffusion”
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Membrane Transport

Examples:

Facilitative Diffusion
lonophore
Maltoporins
GLUT1 transprter
Aquaporin
Selective ion channel for potassium (K-channels)

Active Transport

Primary (1°)
Na/K
ABC

Secondary (2°)
Na/Glc
Bicarb/Cl

Group Translocation
Bacterial phosphotransferase system (PTS)

Membrane Transport

Facilitative
Diffusion




Membrane Transport

Examples of Facilitative lefusmn
(including ionophore mediated) 3
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e Proteins of the E. coli outer
membrane

e Maltoporin (derived from
PDB ID 1MAL) is a maltose
transporter (a trimer; each
monomer consists of 16
strands).
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Membrane Transport
Examples of Facilitative Diffusion
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Membrane Transport
Examples of Facilitative Diffusion

Glucose Transporter
(GLUT1)

D-Glucose
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Membrane Transport
Examples of Facilitative Diffusion

e ¢ Aquaporins Allow Rapid
o B Water Passage Through
W 10i—f 0 i—i0; Membranes
Simple diffusion 2
without transporter

Diffusion
with transporter

Free energy, G

role of His180 — Gates the size of pore at 2.8 A
role of Arg195 —  Repels hydronium ions

role of NPA —Positive poles at ends of helices repels
hydronium ions, but also breaks up

(b)

network of water maoleciles




Membrane Transport

Examples:

Facilitative Diffusion
lonophore
Maltoporins
GLUT1 transprter
Aquaporin
Selective ion channel for potassium (K-channels)
Active Transport
Primary (1°)
Na/K
ABC
Secondary (2°)
Na/Glc
Bicarb/Cl
Group Translocation
Bacterial phosphotransferase system (PTS)

Membrane Transport

Examples of Facilitative Diffusion

/7 Potassium Channel KcsA K*

allows specific passage of
this ion through membranes

A single subunit




Membrane Transport

Examples of Facilitative Diffusion

How is the >100X
specificity for K+
achieved?
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Membrane Transport

Examples of Facilitative Diffusion

H How is the >100X
specificity for K+
Li* .
s achieved?
a
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Membrane Transport

Potassium

Examples of Facilitative Diffusion
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achieved by the size of the binding site, that
won’t work the other way around. To get
specificity of K+ over Na*, the protein takes |
advantage of the higher (30%) energy of P e
dehydration. It takes more energy to §
dehydrate Na* than K* and the protein doesn’t .. .~
make as good bonds to Na*ion as does water """ %
shell (see off-set oxygens in polygon). S

. g + .
Whlle SpeCIfICIty for Na over K can be Sodium Resolvation within
D\'sm',\mnn'
energy

Na(OH,)¢*

Ragius Energy of
(A) |dehydration|
kcal/mole; Desolvation Resolvation within
K'-channel site

K'-channel site

>
29

Q-
9
Na* in K

Na* 10 -72 o -
K- 13  -55 vo~dag I % ’
) Sty ¥ N L,
Rb+ 1.5 -51 e @ i »
Cst 1.7 - 47 o N ¢ ) p \\‘“o
- 19 °
K(OHy)g" ? [+ ]

K* in K*-channel site

»9

]
9

o~y
%3

channel site

11



